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Abstract. The Bidirectional Texture Function (BTF) is the recent most
advanced representation of visual properties of surface materials. It spec-
ifies their altering appearance due to varying illumination and viewing
conditions. Corresponding huge BTF measurements require a mathemat-
ical representation allowing simultaneously extremal compression as well
as high visual fidelity. We present a novel Markovian BTF model based
on a set of underlying simultaneous autoregressive models (SAR). This
complex but efficient BTF-SAR model combines several multispectral
band limited spatial factors and range map sub-models to produce the
required BTF texture space. The BTF-SAR model enables very high
BTF space compression ratio, texture enlargement, and reconstruction
of missing unmeasured parts of the BTF space.

Keywords: BTF, texture analysis, texture synthesis, data compression,
virtual reality.

1 Introduction

Realistic virtual scenes requires object faces covered with synthetic textures visu-
ally as close as possible to the corresponding real surface materials they imitate.
Such textures have to model rugged surfaces, do not obey Lambertian law, and
their reflectance is illumination and view angle dependent. Their most advanced
recent representation is the Bidirectional Texture Function (BTF) [3,7,17] which
is a 7-dimensional function describing surface texture appearance variations due
to varying illumination and viewing angles. Such a function is typically repre-
sented by thousands of images per material sample, each taken for a specific
combination of the illumination and viewing condition. Visual textures can be
either represented by digitised natural textures or textures synthesised from an
appropriate mathematical model.

The former simplistic alternative suffers among others with extreme memory
requirements for storage of a large number of digitised cross sectioned slices
through different material samples or measured BTF space (apposite example
can be found in [21]). Sampling solution become even unmanageable for correctly
modeled visual scenes with BTF texture representation which require to store
tens thousands of different illumination and view angle samples for every texture
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so that even simple visual scene with several materials requires to store tera
bytes of texture data which is still far out of limits for any current and near-
future hardware. Several intelligent sampling methods (for example [4,5] and
many others) were proposed to reduce these extreme memory requirements. All
these methods are based on some sort of original small texture sampling and
the best of them produce very realistic synthetic textures. However they require
to store thousands images for every combination of viewing and illumination
angle of the original target texture sample and in addition often produce visible
seams (except for method presented in [13]). Some of them are computationally
demanding and they are not able to generate textures unseen [17] by these
algorithms.

Contrary to the sampling approaches, the synthetic textures generated from
mathematical models are more flexible and extremely compressed, because sev-
eral parameters have to be stored only. They may be evaluated directly in a
procedural form and can be used to fill virtually infinite texture space without
visible discontinuities. On the other hand, mathematical models can only approx-
imate real measurements, which results in visual quality compromise for some
oversimplified methods. Several multispectral smooth modelling approaches were
published - consult for example [9,15,1,18,16,12,11]. Modelling static BTF tex-
tures requires seven dimensional models, but it is possible to approximate this
general BTF model with a set of much simpler three or two dimensional factorial
models, provided we will accept some information loss.

Among such possible models the random fields are appropriate for texture
modelling not only because they do not suffer from some problems of alterna-
tive options (see [9,18] for details), but they also provide easy texture synthesis
and sufficient flexibility to reproduce a large set of both natural and artificial
textures. While the random field based models quite successfully represent high
frequencies present in natural textures, low frequencies are sometimes difficult
for them. This slight drawback may be overcome by using a multiscale ran-
dom field model. Multiple resolution decomposition such as Gaussian Laplacian
pyramids, wavelet pyramids or subband pyramids present efficient method for
the spatial information compressing. The hierarchy of different resolutions of
an input image provides a transition between pixel level features and region
or global features and hence such a representation simplify modelling a large
variety of possible textures. Each resolution component is both analysed and
synthesised independently.

We propose a novel algorithm for efficient rough texture modelling which com-
bines an estimated range map with synthetic multiscale SAR based generated
smooth texture. The texture visual appearance during changes of viewing and il-
lumination conditions are simulated using the bump mapping [2] or displacement
mapping [22] technique. The obvious advantage of this solution is the possibility
to use hardware support for both bump and displacement mapping techniques
in the contemporary visualisation hardware (GPU).
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2 BTF-SAR Model

The BTF-SAR model combines an estimated range map with synthetic multi-
scale smooth texture. The overall BTF-SARmodel scheme is on Fig.1. The model
starts with range map estimation (section 2.1) followed by the BTF illumina-
tion / view (θi, φi/θv, φv) space segmentation into c subspace images (the closest
BTF images to cluster centers) using the K-means algorithm. Eigen-analysis of
BTF data has shown that c = 20 is sufficient to represent its reflectance correctly
for most of the material samples. The color cumulative histograms of individual
BTF images, in perceptually uniform CIE Lab color-space, are used as the data
features. Smooth parts of single BTF subspace spatial factors (section 2.2) tex-
tures (3D Y ) are modelled using the SAR factorial texture model of section
3. Each multispectral fine-resolution BTF subspace component is obtained from
the pyramid collapse procedure (i.e. the interpolation of sub-band components
- the inversion process to the creation of the Gaussian-Laplacian pyramid).

The overall BTF texture visual appearance during changes of viewing and
illumination conditions is simulated using either bump or displacement map-
ping technique. This solution can benefit from bump / displacement mapping
hardware support in contemporary visualisation hardware.

Let us denote multiindices r, s r = (r1, r2), r ∈ I or r ∈ Ĩ , (similarly
for s = (s1, s2)) where I, Ĩ are discrete 2-dimensional finite rectangular lattices
with toroidal border conditions indexing the model random field and measured
BTF images, respectively. Usually, the synthesized random field is much larger
than the measured one, i.e. Ĩ ⊂ I. r1 is the row, and r2 the column index,
respectively. Yr is multispectral pixel at location r and Yr,j ∈ R is its j-th
spectral plane component (j ∈< 1; d >).

Fig. 1. The BTF-SAR modelling scheme

2.1 Range Map Modelling

The overall roughness of a textured surface significantly influences the BTF
texture appearance. Such a surface can be specified using its single range map
per material, which can be either measured or estimated by several existing
approaches such as the shape from shading [8], shape from texture [6] or photo-
metric stereo [23], respectively. The BTF-SAR range map estimate benefits from
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tens of ideally mutually registered BTF measurements (e.g. 81 for a fixed view of
the University of Bonn data) and uses the over-determined photometric stereo
from mutually aligned BTF images. The estimated material range map is further
enlarged by the image roller technique [13,14]. The photometric stereo enables
to acquire the normal and albedo fields from at least three intensity images ob-
tained for different illuminations but fixed camera position while a Lambertian
opaque surface is assumed. However, the photometric stereo method is not well
suited for surfaces with highly specular reflectance, highly subsurface scatter-
ing or strong occlusion, since it breaks the underlying Lambertain reflectance
assumption.

2.2 Spatial Factorization

An analysed BTF subspace texture is decomposed into multiple resolutions fac-

tors using the Laplacian pyramid and the intermediary Gaussian pyramid Y
′′(k)
•

which is a sequence of images in which each one is a low-pass down-sampled ver-
sion of its predecessor. The symbol • denotes all corresponding indices (∀r ∈ I).
The Gaussian pyramid for a reduction factor n is [11]:

Y
′′(k)
r =↓nr (Y

′′(k−1)
•,i ⊗ w) k = 1, 2, . . . , (1)

↓nr denotes down-sampling with reduction factor n and ⊗ is the convolution

operation. The Laplacian pyramid Y
′(k)
r contains band pass components and

provides a good approximation to the Laplacian of the Gaussian kernel. It can
be constructed by differencing single Gaussian pyramid layers:

Y
′(k)
r = Y

′′(k)
r − ↑nr (Y

′′(k+1)
• ), k = 0, 1, . . . . (2)

Each resolution data are independently modelled by their dedicated SAR.

3 SAR Factorial Texture Model

Single multispectral smooth texture factors are modelled using the multispectral
simultaneous autoregressive model (SAR) [1]. The 3D SAR model relates each
zero mean pixel value Yr by a linear combination of neighbouring pixel values
and an additive uncorrelated Gaussian noise component[1]:

Yr,i =
d∑

j=1

∑

s∈Ii,j
r

as,i,j Yr⊕s,j + er,i, i = 1, . . . , d , (3)

where d equals the number of image spectral planes, Ii,jr denotes the neighbour
set relating pixels in plane i to neighbouring ones in plane j, as,i,j , s ∈ Ir
are the corresponding parameters which define the dependence of Yr,i on its
neighbour sets Ii,jr ∀j. The driving Gaussian noise er,i are i.i.d. random variables
with zero mean and the i−th spectral plane variance is denoted σi. The symbol
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Fig. 2. Synthetic leather (left) and foil mapped to the kettle object

⊕ denotes modulo M addition in each index. Note that the SAR model can be
easily defined also for other than the Gaussian noise.

Rewriting the autoregressive equation (3) to the matrix form for the multi-
spectral model, i.e., i ∈ {1, . . . , d}, the SAR model equations are

Ψ Y = ε (4)

where

Ψ =

⎛

⎜⎜⎜⎝

Ψ11 Ψ12 . . . Ψ1d

Ψ21 Ψ22 . . . Ψ2d

...
...

...
Ψd1 Ψd2 . . . Ψdd

⎞

⎟⎟⎟⎠ , (5)

Y = [Y[1], Y[2], . . . , Y[d]]
T ,

ε = [e[1], e[2], . . . , e[d]]
T ,

and both Y[i] and e[i] are M2 vectors of lexicographic ordered arrays {Y•,i}
and {e•,i}. The transformation matrix Ψ is composed of M2 × M2 block
circulant submatrices (6):

Ψij =

⎛

⎜⎜⎜⎝

Ψ1
ij Ψ2

ij . . . ΨM
ij

ΨM
ij Ψ1

ij . . . Ψ
M−1
ij

...
...

. . .
...

Ψ2
ij Ψ3

ij . . . Ψ1
ij

⎞

⎟⎟⎟⎠ (6)
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where each Ψk
ij is a M ×M circulant matrix whose (m,n)-th element is given

by:

Ψk
ij,m,n =

⎧
⎨

⎩

1, i = j, m = n, k = 1,
−as,i,j, s1 = k − 1, s2 = ((n−m) mod M), (s1, s2) ∈ Iijr ,
0, otherwise.

(7)

Writing the image observations (4) as

Y = Ψ−1 ε ,

the image covariance matrix is obtained as

ΣY = E{Y Y T } = E
{
Ψ−1ε εTΨ−T

}
= Ψ−1Σε Ψ

−T

where

Σε = E{εεT} =

⎛

⎜⎜⎜⎝

σ1 I 0 . . . 0
0 σ2 I . . . 0
...

...
0 0 . . . σd I

⎞

⎟⎟⎟⎠ . (8)

3.1 Parameter Estimation

The selection of an appropriate SAR model support is important to obtain good
results in modelling of a given random field. If the contextual neighbourhood
is too small, it cannot capture all details of the random field. Contrariwise,
inclusion of the unnecessary neighbours adds to the computational burden and
can potentially degrade the performance of the model as an additional source
of noise. Direct selection of the optimal support requires numerical optimization
hence we exploit a spatial correlation approach [15]. Similarly, both Bayesian
as well as the maximum likelihood SAR parameter estimators require numerical
optimization.

A least squares (LS) SAR model parameters estimate allows to avoid an ex-
pensive numerical optimization method at the cost of accuracy. It can be ob-
tained by equating the observed pixel values of an image to the expected value
of the model equations. For a multispectral SAR model this task leads to d
independent systems of M2 equations:

Yr,i = E {Yr,i | γi} = XT
r,i γi, r ∈ I, i ∈ {1, . . . , d} , (9)

γi = [γi1, γi2, . . . , γid]
T ,

Xr,i =
[{Yr⊕s,1 : s ∈ Ii1r }, {Yr⊕s,2 : s ∈ Ii2r }, . . . , {Yr⊕s,d : s ∈ Iidr }]T ,

where γij = [as,i,j : ∀s ∈ Ii,jr ] and for which the LS estimates γ̂i and σ̂i can be
found as
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γ̂i =

(
∑

s∈I

Xs,iX
T
s,i

)−1(∑

s∈I

Xs,i Ys,i

)
,

σ̂i =
1

M2

∑

s∈I

(
Ys,i − γ̂i

T Xs,i

)2
.

3.2 SAR Model Synthesis

A general multidimensional SAR model has to be synthesized using some of
the Markov Chain Monte Carlo (MCMC) methods. Due to our toroidal lattice
assumption we can use a noniterative efficient synthesis which uses the discrete
fast Fourier transformation (DFT) instead. The SAR model equations (3) may
be expressed in terms of the DFT of each image plane as:

Ỹt,i =

d∑

j=1

∑

s∈Iij
r

as,i,j Ỹt,j e
√−1ωst + ε̃t,i, i = 1, . . . , d, (10)

where Ỹt,i and ε̃t,i are the 2D DFT coefficients of the image observation and
noise sequences {Ys,i} and {es,i}, respectively, at discrete frequency index

t = (m,n) and ωrt = 2π(mr1+nr2)
M . For the multispectral model this can be

written in matrix form as

Ỹt = Λ−1
t Σ

1
2 ε̃t, t ∈ I, (11)

where

Ỹt = [Ỹt,1, Ỹt,2, . . . , Ỹt,d]
T ,

ε̃t = (ε̃t,1, ε̃t,2, . . . , ε̃t,d)
T ,

Σ
1
2 =

⎛

⎜⎜⎜⎝

√
σ1 0 . . . 0
0

√
σ2 . . . 0

...
...

0 0 . . .
√
σd

⎞

⎟⎟⎟⎠ ,

Λt =

⎛

⎜⎜⎜⎝

λt,11 λt,12 . . . λt,1d

λt,21 λt,22 . . . λt,2d

...
...

λt,d1(t) λt,d2 . . . λt,dd

⎞

⎟⎟⎟⎠ ,

λt,ij =

{
1−∑s∈Iij

r
as,i,j e

√−1ωst i = j ,

−∑s∈Iij
r
as,i,j e

√−1ωst i 
= j .
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The SAR model is stable and valid if Λt is non-singular matrix ∀t ∈ I. Given
the estimated model parameters, a d ×M ×M multispectral SAR image can
be non iteratively synthesized using the following algorithm:

1. Generate the i.i.d. noise arrays {er,i} for each image plane using a Gaussian
random number generator.

2. Calculate the 2D DFT of each noise array, i.e., produce the transformed
noise arrays {ε̃t,i}.

3. For each discrete frequency index t, compute Ỹt = Λ−1
t Σ

1
2 ε̃t.

4. Perform the 2D inverse DFT of each frequency plane {Ỹt,i}, producing the
synthesized image planes {Ys,i}.

The resulting image planes will have zero mean thus it is necessary to add the
estimated mean to each spectral plane in the end. The fine resolution texture
is obtained from the pyramid collapse procedure (inversion process to process
described in section 2.2).

4 Results

We have tested the BTF-SAR model algorithm on BTF colour textures from
the University of Bonn BTF measurements [17,21] (among several available ma-
terials are leather, wood, or wool). Each BTF material sample comprised in
the University of Bonn database is measured in 81 illumination and 81 viewing
angles and has resolution 800 × 800 pixels, so that 81 × 81 images had to be
analysed for each material. Fig.2 demonstrates the synthesised result for leather
and foil materials, i.e. synthesised BTF textures combined with their range maps
in the displacement mapping filter of the rendering Blender1 software with the

Fig. 3. Two types of modelled wood textures mapped to the conch model

1 www.blender.org

www.blender.org
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BTF plugin [19,20] and mapped to the kettle model2 The scene was rendered in
several different illumination conditions to demonstrate visual quality of the syn-
thesised BTF. The same approach for two different wood varieties and a detailed
conch model measured using our Konika-Minolta laser scanner is illustrated on
Fig.3.

Table 1. Mutual comparison of 3D Gaussian Markovian models, PC with 2 Dual Core
Pentium 2.8 GHz CPU time was tested using the symmetric half of the first order
hierarchical neighbourhood (i.e. 3 neighbours) on 800 × 800 training and 512 × 512
synthesized texture, respectively

Properties
model Markovianity analysis synthesis support

SAR wide-sense approx. MCMC / FFT general
CAR wide-sense analytical analytical causal / unilateral
GMRF strict-sense approx. MCMC / FFT symm. hierarchical

CPU time [s]
model stability analysis synthesis

SAR + 0.25 1.35
CAR − 0.55 0.15
GMRF + 3.9 2.5

Tab.1 surveys the basic features of three related SAR, CAR [12], GMRF [10]
factorial texture models which can alternate in the overall BTF model. All these
3D models can be expressed in the autoregressive form but only the CAR model
can be solved analytically [12], does not require the toroidal border assumption,
and has by the order of magnited faster synthesis. However, both non causal
models (SAR, GMRF) are more general and robust. Analogous conclusions hold
also for their 2D counterparts.

5 Conclusion

Our testing results of the algorithm on all available BTF data are promising
although they are based on the mathematical model in contrast to the intelligent
sampling approach, and as such they can only approximate realism of the original
measurement. Some synthetic textures reproduce given measured texture images
so that both natural and synthetic textures are almost visually indiscernible.
Even the not so successful results can be used for the preattentive BTF textures
applications. The main benefit of this inherently multispectral method is more
realistic representation of texture colourfulness, which is naturally apparent in

2 http://e2-productions.com/repository/modules/PDdownloads/singlefile.

php?cid=10&lid=388

http://e2-productions.com/repository/modules/PDdownloads/singlefile.php?cid=10&lid=388
http://e2-productions.com/repository/modules/PDdownloads/singlefile.php?cid=10&lid=388
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case of very distinctively coloured textures. The multi scale approach is more
robust and sometimes allows better results than the singlescale one.

The presented BTF-SAR model offers fast seamless enlargement of BTF tex-
ture to arbitrary size, very high BTF texture compression ratio which cannot be
achieved by any other sampling based BTF texture synthesis method. This is
advantageous for transmission, storing or modelling visual surface texture data
while the model has still moderate computation complexity. The method does
not need any time consuming numerical optimisation like the usually employed
Markov chain Monte Carlo method or some of their deterministic approxima-
tion. In addition, this model may be used to reconstruct BTF space (i.e. missing
parts of the BTF measurement space) or even non existing (i.e. previously not
measured or edited) BTF textures. The model is also potentially capable of di-
rect implementation inside the graphical card processing unit or a multithreaded
implementation.
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